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Abstract
Cross-Embodiment Learning (CEL) aims to train a generalist pol-
icy model by integrating large-scale compositional interactions of
heterogeneous agents and environments. However, the inherent
conflict between the unbounded space of agent-environment com-
binations and a single unified policy model hinders generalization
to unseen combinations. To address this challenge, we propose a
novel Mixture of Disentangled Prototypes (MoDP) method to im-
prove the compositional generalization in CEL. The key idea is to
introduce a finite prototype space that bridges the gap between
unbounded agent-environment combinations and a single policy
model. Specifically, we design a dual-headed autoencoder and a
compositional reconstruction loss to disentangle agent and envi-
ronment features from interaction data, and map them into respec-
tive prototype spaces. We then introduce a connection-sensitivity-
based pruning method to extract sub-networks from the pre-trained
policy model, forming policy prototypes associated with specific
agent-environment prototype pairs. Finally, a parameter-free rout-
ing mechanism adaptively integrates relevant policy prototypes for
each input composition. Experiments in both standard and com-
positional settings demonstrate the effectiveness of our MoDP in
enhancing the generalization capability of pre-trained policies.

CCS Concepts
• Computing methodologies→ Learning from demonstrations.
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1 Introduction
Cross-Embodied Learning [10, 50] (CEL) seeks to train a unified
policy applicable to heterogeneous robot entities and capable of
interacting with various environments, leading to better robustness
and generalization. The resulting well-trained model, known as the
generalist embodied agent [37], is expected to drive advancements
in fields such as home service, autonomous driving, and multi-agent
collaboration [11, 59]. As collecting embodied data from a single
robot embodiment remains costly and inefficient, CEL has become
an increasingly prominent research focus.

Rapid progress in CEL is primarily driven by advances in both
large-scale embodied datasets and unified model architectures. On
the data side, recent efforts have significantly expanded the scale
and diversity of interaction data [13]. For example, RoboNet [9]
and HM3D [51] provide large-scale data for manipulation and nav-
igation tasks, respectively, covering diverse embodiments and real-
world environments. Open X-Embodiment [33] further integrates
data from over 20 robot platforms and 500 tasks, serving as a com-
prehensive benchmark for CEL. On the model side, Transformer-
based architectures have emerged as a promising foundation for
generalist policy learning. RT-X [3, 61] demonstrates that scal-
able vision-language-action models trained on diverse embodied
data can generalize across both tasks and embodiments. Cross-
Former [10] and HPT [39] further explore modular designs that
represent heterogeneous inputs as unified token sequences and
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Figure 1: Illustration of the key idea of our MoDP method. (a) Existing cross-embodiment learning (CEL) approaches train a
single generalist policy model across various combinations of agents and environments. The inherent conflict between the
unbounded combination space and a single policy model poses a challenge to achieving compositional generalization. (b)
Our MoDP method introduces a finite prototype space to disentangle agents, environments, and policies. Therefore, unseen
combinations can be represented using known prototypes and routed to an appropriate mixture of policy prototypes.

share a common trunk network, improving adaptability to diverse
embodiments.

The paradigm of training general-purpose models on large-scale
aggregated data has been successfully validated in domains such as
natural language processing (NLP) [17]. However, it poses new chal-
lenges for compositional generalization in the embodied domain.
Fundamentally, NLP tasks involve discrete, symbolic inputs (e.g.,
words or tokens) that can be flexibly recombined under well-defined
compositional rules, with training data often densely covering a
wide range of such combinations [21]. In contrast, embodied tasks
are grounded in continuous, high-dimensional interactions, where
the agent’s proprioception, environmental observation, and pol-
icy action are tightly coupled and interdependent. This intrinsic
entanglement limits the transferability of learned skills to unseen
combinations of agents and environments. As illustrated in Fig.
1 (a), the compositional generalization capability of current CEL
approaches is limited by two key factors:

• The combinatorial explosion of agents and environ-
ments. The space of agent and environment is virtually
unbounded, making exhaustive data coverage impractical.
• The limited capacity of a single unified model. Diver-
sity in agent-environment combinations can introduce pol-
icy conflicts, limiting the positive transferability of a single
model across compositions [10].

Compositional generalization is not a new topic and has been
widely studied in language, vision, and reinforcement learning. Ex-
isting methods include symbolic rule-based approaches [22], mod-
ular architectures [60], and factorized policy representations [18].
For example, NMN [1] assumes visual reasoning can be decomposed
into discrete submodules; Slot Attention [29] enforces object-centric
representations via spatial disentanglement; and C-SWM [20] fac-
torize dynamics and content for better policy transfer. In contrast,
embodied tasks involve a tight coupling between agent, environ-
ment, and policy. Effectively disentangling these components and
balancing the trade-off between the unbounded combination space
and a unified model remains a valuable yet underexplored problem.

To address this problem, we innovatively propose a Mixture of
Disentangled Prototypes (MoDP) method. As shown in Fig. 1 (b),
the key idea is to introduce a finite prototype space that bridges
the gap between unbounded agent-environment combinations and
a unified policy. In prototype spaces, the mapping from unseen
agent-environment combinations to their corresponding policies
can be modeled as the mapping between known prototypes, en-
abling effective compositional generalization. Specifically, a dual-
head autoencoder is designed to disentangle interaction data into
agent and environment prototype spaces. Next, we identify policy
prototypes by pruning sub-networks from a pre-trained generalist
policy model by measuring the connection sensitivity of parame-
ters. Finally, we introduce a parameter-free routing mechanism that
adaptively assigns appropriate policies to each agent-environment
combination. Experimental results under both standard and com-
positional settings validate the effectiveness of our method. Main
contributions are summarized as follows:
• We propose a novel mixture of disentangled prototypes
method to improve the compositional generalization of cross-
embodiment learning.
• Wedesign a compositional reconstruction loss and parameter-
saliency-based pruning method to disentangle agent, envi-
ronment, and policy prototypes.
• We evaluate our method under both generalist and con-
structed compositional settings, demonstrating its effective-
ness in improving cross-embodiment generalization.

2 Related Works
2.1 Cross-Embodied Learning
Cross-Embodiment Learning focuses on enabling robots to gen-
eralize learned policies across different embodiments. Early work
explored techniques such as conditioning on explicit representa-
tions of the embodiment [8], domain randomization and adaptation
[12, 34], and modular policies [19, 52], which were applied to sim-
pler scenarios like single-task manipulations. Subsequent research
has focused on alignment methods to develop universal strategies
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that can transfer across tasks, such as manipulation and navigation.
Recent work includes the design of more powerful generalizable
policy models for specific domains, such as RoboCat [2], GVA [15],
and MagenticOne [14], as well as models that generalize across
various types of scenarios, such as Octo [16], CrossFormer [10],
HPT [39], etc. These methods focus on training a general policy
model for heterogeneous agents but rarely address the generaliza-
tion capability in unseen combinations of agents and environments.
Our work bridges this gap and holds the potential to enhance the
compositional generalization of existing CEL methods.

2.2 Compositional Generalization
Compositional generalization [28] (CG) has gained significant at-
tention across various domains. In language and semantics, CG
involves the ability of models to generalize to unseen combinations
of words or sentences. For instance, Qiu et al. [36] explore CG in
semantic parsing, highlighting challenges with larger models that
still struggle with novel combinations. In reinforcement learning
(RL), CG focuses on generalizing across combinations of tasks or en-
tities. Mambelli et al. [32] address multi-object manipulation, while
Zhao et al. [58] propose the HOWM model for object-oriented RL,
improving generalization to dynamic settings. Instead, our work
focuses on agent-environment compositional generalization in CEL,
where models must handle complex, dynamic interactions between
agents and their environments.

2.3 Disentangled Representation Learning
Disentangled Representation Learning (DRL) aims to separate un-
derlying factors in data to enhance interpretability and generaliza-
tion [43, 44, 46, 47]. In graph learning, advances include separating
invariant and variant mechanisms to improve the generalization
under distribution shifts [24–27, 56], leveraging neural architecture
search to disentangle functional modules for continual and trans-
ferable optimization [55, 57], and employing large language models
to extract factorized semantics in text-attributed graphs [35]. In
recommendation systems, DRL has been applied to disentangle
multi-intent user factors [30, 31], multimodal user–item factors
[45], feedback signals [4, 42, 48], and sequential patterns [54, 55]. In
generation and grounding, DRL is commonly used to disentangle
identity from background and content from location, improving con-
trollability and personalization [5–7, 49]. In this work, we explore a
DRL strategy tailored to CEL, disentangling agent and environment
prototypes from embodied interaction data at the feature level and
policy prototypes at the architectural level, addressing the unique
challenge of achieving compositional generalization.

3 Problem Formulation
In embodied AI, an agent 𝛼 interacts with an environment 𝜀 through
a closed loop of perception and action. Formally, Each interaction
episode yields a trajectory 𝜏 = (𝑠1, 𝑎1, 𝑠2, 𝑎2, . . . , 𝑠𝑡 , 𝑎𝑡 , . . . ), where
𝑠𝑡 and 𝑎𝑡 denote the state observed at timestep 𝑡 and the action
executed by the agent, respectively. Due to the heterogeneity of
agents and the complexity of environments, the state 𝑠𝑡 can be a
multimodal observation comprising proprioception, RGB images,
3D point clouds, and scalar feedback. These observations implicitly
contain two types of latent information: agent-related information

(e.g., embodiment, kinematics, or internal state) and environment-
related information (e.g., scene layout, objects, dynamics).

We denote the agent and environment spaces asA and E, respec-
tively. An embodied task instance involving the interaction between
agent 𝛼 ∈ A and environment 𝜀 ∈ E can be represented by their
combination, i.e., 𝑡⟨𝛼,𝜀 ⟩ ∈ T , where T ⊆ A ×E denotes the overall
embodied task space. By collecting demonstrations Ttrain ⊂ T from
various agents interacting with their environments, CEL aims to
train a generalist policy model 𝜋 : 𝑠⟨𝛼,𝜀 ⟩ ↦→ 𝑎𝛼 that maps obser-
vations to appropriate actions across diverse task instances. How-
ever, since the data reflect only a finite subset of possible agent-
environment combinations, existing methods inevitably face the
following combinational generalization challenge:
Definition 1 (Combinational Generalization): Given a training
set Ttrain ⊂ A × E, where each element (𝛼, 𝜀) denotes a specific
agent-environment pairing, the goal is to generalize to a set of
unseen combinations in a testing set Ttest ⊂ (A × E) \ Ttrain:

∀(𝛼 ′, 𝜀′) ∈ Ttest, 𝛼 ′ ∈ A, 𝜀′ ∈ E, (𝛼 ′, 𝜀′) ∉ Ttrain . (1)

That is, while the agent and environment have been seen individ-
ually during training, their specific combination has not. A model
capable of compositional generalization must recombine learned be-
haviors across these independently observed components to handle
novel pairings at test time.

As discussed in the Introduction, the challenge of compositional
generalization in CEL exists at both the data and the model lev-
els. From a data perspective, exhaustively collecting data from all
possible agent-environment combinations is prohibitively expen-
sive and practically infeasible. Moreover, heterogeneous agents
are typically tied to specific environments, and indiscriminately
integrating these interaction data may lead to overfitting to the
specific agent-environment combinations rather than the policy
itself, preventing generalization to new combinations.

From the model perspective, the challenge arises due to entan-
gled representations of agent-specific and environment-specific
factors. Existing CEL methods optimize a policy 𝜋 (𝑎𝑡 | 𝑠𝑡 ), where
the state 𝑠𝑡 contains both the agent’s internal state and its external
perception. However, the policy processes this composite input in
a monolithic fashion. In the absence of mechanisms to explicitly
disentangle the influences of 𝛼 and 𝜀 on behavior, the learned pol-
icy becomes tightly coupled to the joint training distribution, and
struggles to generalize when the composition shifts at test time.

4 Method
This paper proposes a novel Mixture of Disentangled Prototypes
(MoDP) method to address the challenge of compositional gen-
eralization in CEL. The key idea is to represent the unbounded
agent-environment combinations and the single policy as mixtures
over a finite set of disentangled prototypes. As illustrated in Fig. 2,
our MoDP consists of three main modules: the Agent and Environ-
ment Prototypes Disentanglement module, the Policy Prototype
Disentanglement module, and the Disentangled Prototype Routing
module. The first two modules are responsible for disentangling
the three fundamental factors (agent, environment, and policy) into
their respective prototype spaces. The final module then integrates
these disentangled prototypes to construct generalized policies
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module extracts policy prototypes from a pre-trained model via connection-sensitive pruning; and (3) DPR module adaptively
routes prototype-aligned sub-policies for given agent-environment compositions.

capable of handling novel agent-environment combinations. The
following subsections elaborate on each module in our framework.

4.1 Agent and Environment Prototypes
Disentanglement (AEPD)

The purpose of the AEPD module is to learn a disentangled repre-
sentation of the agent and environment by projecting their high-
dimensional interaction embeddings 1 into two independent proto-
type spaces. Specifically, given an interaction embedding 𝑥⟨𝛼,𝜀 ⟩ ∈
R𝑑 extracted from a trajectory 𝜏 in task 𝑡⟨𝛼,𝜀 ⟩ , we employ a dual-
headed encoder 𝑓 (·) = [𝑓𝛼 (·), 𝑓𝜀 (·)] to decompose 𝑥 into agent-
specific and environment-specific representations 𝑧𝛼 = 𝑓𝛼 (𝑥) ∈
R𝑑𝛼 and 𝑧𝜀 = 𝑓𝜀 (𝑥) ∈ R𝑑𝜀 , respectively.

Further, these latent features are softly projected onto two learn-
able prototype spaces. LetP𝛼 ∈ R𝑑𝛼×𝐾𝛼 denote the agent prototype
matrix, containing 𝐾𝛼 basis vectors as columns, and P𝜀 ∈ R𝑑𝜀×𝐾𝜀

denote the environment prototype matrix. For each input, we com-
pute prototype-based representations through linear combination:

𝑧𝛼 = P𝛼𝑤𝛼 , 𝑧𝜀 = P𝜀𝑤𝜀 , (2)

where𝑤𝛼 and𝑤𝜀 are the attention weights, computed via a softmax
over similarity scores between the input features and the corre-
sponding prototypes:

𝑤𝛼 = softmax(P⊤𝛼 𝑧𝛼 ), 𝑤𝜀 = softmax(P⊤𝜀 𝑧𝜀 ) . (3)

This formulation allows each representation to be expressed as
a convex combination of a small set of shared prototype vectors.
Intuitively, the weights𝑤𝛼 and𝑤𝜀 reflect how strongly the current
1The interaction embeddings 𝑥 is derived by mapping heterogeneous state data 𝑠 into
a unified dimensional space, which serves as the pre-processing in CEL and is not the
focus of our study.

instance activates each agent or environment prototype, thereby
enabling the model to capture reusable, structured factors that
generalize across combinations.

Now, we have decomposed the interaction state into two sets
of features and represented them as combinations of prototypes in
their respective prototype spaces. However, we still cannot guar-
antee the quality of these features, nor ensure that they have in-
dependently learned the agent-specific and environment-specific
information. To address this issue, inspired by the idea of “proxy”
[40], we design three constraints to ensure the Representative-
ness, Uniqueness, and Simplicity of the disentangled features.
• Representativeness requires that the disentangled agent
and environment features effectively capture the underlying
characteristics of the agent and the environment, respec-
tively. To enforce this, we design a hybrid reconstruction
loss:

LCR =
∑︁

𝜀≠𝜀′
(𝛼,𝜀 ),(𝛼,𝜀′ ) ∈Ttrain



𝑔(𝑧𝛼 ⊕ 𝑧𝜀 ) − 𝑥⟨𝛼,𝜀 ⟩

2
+ 𝜆CR



𝑔(𝑧𝛼 ⊕ 𝑧𝜀′ ) − 𝑥⟨𝛼,𝜀′ ⟩

2 , (4)

where 𝑔(·) is the decoder network, and ⊕ denotes feature
concatenation. The first term is a reconstruction loss over
all observed interactions, encouraging the fused agent and
environment prototype features to accurately reconstruct
the corresponding interaction embeddings. The second term
is the compositional reconstruction loss, which enforces
cross-instance consistency. Given an agent 𝛼 observed in en-
vironment 𝜀, and an environment 𝜀′ associated with another
agent 𝛼 ′, the agent prototype from ⟨𝛼, 𝜀⟩ is recombined with
the environment prototype from ⟨𝛼 ′, 𝜀′⟩ to reconstruct the
embedding of ⟨𝛼, 𝜀′⟩. Thus, the well-designed loss LCR can
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encourage the learned prototypes to be both disentangled
and composable across agent-environment combinations.
• Uniqueness requires each prototype to capture distinct,
non-overlapping information about either the agent or envi-
ronment. To this end, we impose an orthogonality constraint
on the prototype-based agent and environment features:

Lo =
∑︁

(𝛼,𝜀 ) ∈Ttrain





 𝑧⊤𝛼 𝑧𝜀
∥𝑧𝛼 ∥ · ∥𝑧𝜀 ∥





2 . (5)

This constraint minimizes the cosine similarity between
agent and environment features, encouraging the model to
encode non-redundant, factor-specific information in each
branch. This, in turn, improves both interpretability and
compositional generalization.
• Simplicity follows the principle of Occam’s razor, imply-
ing that each feature should rely on only a small subset of
prototypes. To enforce this, we apply an ℓ1-based sparsity
regularization on the attention weights:

Ls =
∑︁

(𝛼,𝜀 ) ∈Ttrain
(∥𝑤𝛼 ∥1 + ∥𝑤𝜀 ∥1) . (6)

The final loss function in the AEPD module is given by:

LAEPD = LCR + 𝜆oLo + 𝜆sLs, (7)

where 𝜆o and 𝜆s are hyper-parameters controlling the strength
of regularization. This loss encourages the learned agent and en-
vironment representations to be informative, disentangled, and
interpretable through a set of shared prototype vectors.

4.2 Policy Prototype Disentanglement (PPD)
The AEPD module has effectively transformed the potentially un-
bounded combinations of agent-environment combinations into a
finite set of agent and environment prototype compositions. The
next challenge is to enable the policy model to generalize across
these prototype compositions. A straightforward and intuitive ap-
proach is to directly train a generalist policy model, or fine-tune
a pre-trained one, using all available combinations of agent and
environment prototypes. However, this strategy suffers from two
fundamental limitations:
• There is no explicit supervision onwhich agent-environment
prototype pairs should behave similarly or differently;
• Not all parameters in the policy network transfer equally
well across prototype pairs. Blindly sharing or adapting them
may lead to negative transfer [10].

To address these limitations, the PPDmodule aims to build factor-
ized sub-policies associated with specific prototype combinations
instead of a single generalist policy. The key idea is to represent
each sub-policy as a mask-induced sub-network pruned from the
pre-trained policy model. Conditioned on a pair of agent and en-
vironment prototypes, each sub-network is selectively activated
based on the semantic structure of the input interaction.

Concretely, let 𝜋base denote the pretrained generalist policy
model, instantiated as a Transformer with 𝐿 layers, each includ-
ing a feedforward network (FFN) with weights {𝑊ℓ ∈ R𝑑ℓ×𝑑ℓ }𝐿ℓ=1.
For each agent-environment prototype pair (𝑝 (𝑘 )𝛼 , 𝑝

(𝑙 )
𝜀 ), we learn

a corresponding mask {𝑀 (ℓ )
𝑘,𝑙
∈ [0, 1]𝑑ℓ×𝑑ℓ }𝐿

ℓ=1, and the associated
subnetwork as a policy prototype 𝜋𝑘,𝑙 :

𝜋𝑘,𝑙 (𝑥) := 𝜋base
(
𝑥 ; {𝑀 (ℓ )

𝑘,𝑙
⊙𝑊ℓ }𝐿ℓ=1

)
, (8)

where ⊙ denotes element-wise multiplication.
Inspired by prior work [23, 41], the mask values are computed

based on the connection sensitivity of each parameter with respect
to the current agent-environment prototype pair. Specifically, given
a prototype feature pair 𝑧𝛼 and 𝑧𝜀 , and their associated prototypes
(𝑝 (𝑘 )𝛼 , 𝑝

(𝑙 )
𝜀 ), the sensitivity of each parameter is estimated as the

absolute product of the weight and its gradient:

𝑆
(ℓ )
𝑘,𝑙

=

����𝑊ℓ ⊙
𝜕L(𝜋base (𝑧𝛼 , 𝑧𝜀 ))

𝜕𝑊ℓ

���� . (9)

This connection sensitivity reflects how strongly each parameter
contributes to the policy output for a given prototype pair. The
binary mask is then obtained by applying a threshold 𝛾 : 𝑀 (ℓ )

𝑘,𝑙
=

I(𝑆 (ℓ )
𝑘,𝑙

> 𝛾), where I(·) denotes the indicator function.
This process yields a set of policy prototypes aligned with the un-

derlying factorized representation space. Each mask effectively cap-
tures which parts of the base model are responsible for expressing
the behavior associated with a given agent-environment prototype
combination. Each mask defines a submodel that acts as an expert
policy tailored to a specific agent-environment prototype pair. This
completes our prototype-based disentanglement of agents, envi-
ronments, and policies. The following section presents how these
modular components are integrated via prototype-guided mixture
to realize generalization to novel combinations.

4.3 Disentangled Prototype Routing (DPR)
Based on the disentangled prototypes of the agent, environment,
and policy, this DPR module integrates them to produce adaptive
policy across diverse agent-environment combinations.

Given an input interaction 𝑥 , the soft assignment weights over
agent and environment prototypes obtained from the AEPD mod-
ule naturally define a weighting over the full space of prototype
pairs. Each policy prototype 𝜋𝑘,𝑙 (𝑥), as defined in the PPD module,
corresponds to a masked sub-network of the shared pre-trained
policy model, specialized to the prototype pair (𝑝 (𝑘 )𝛼 , 𝑝

(𝑙 )
𝜀 ). The

final action prediction is computed as a weighted combination of
all sub-policies:

𝑎 =

𝐾𝛼∑︁
𝑘=1

𝐾𝜀∑︁
𝑙=1

𝑤
(𝑘 )
𝛼 𝑤

(𝑙 )
𝜀 · 𝜋𝑘,𝑙 (𝑥) . (10)

This parameter-free soft routing mechanism allows the model
to interpolate between prototype-aligned behaviors and synthe-
size coherent policies, even for novel combinations unseen during
training. The predicted action 𝑎 is trained via standard imitation
learning, with the loss function defined as mean squared error:

LP = ℓ (𝑎, 𝑎) = ∥𝑎 − 𝑎∥22, (11)

where 𝑎 is the demonstrated action.
To enable continual refinement, all types of prototypes are up-

dated using a momentum-based scheme that aggregates informa-
tion across training batches. As a concrete example, each policy
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Algorithm 1 Training Procedure of MoDP method

Require: DatasetTtrain = {(𝑠, 𝑎)⟨𝛼,𝜀 ⟩}, learning rate𝜂, momentum
𝜆, the number of agent and environment prototypes 𝐾𝛼 and 𝐾𝜀

Ensure: Prototypes P𝛼 , P𝜀 , and {𝑀 (ℓ )𝑘,𝑙 }
1: Initialize shared encoder 𝑓 , decoder 𝑔, pretrained policy 𝜋base
2: Initialize agent/environment prototype matrices P𝛼 , P𝜀
3: Initialize mask parameters {𝑀 (ℓ )

𝑘,𝑙
} for each prototype pair.

4: for each minibatch 𝐵 ⊂ Ttrain do
5: for each sample (𝑠, 𝑎) ∈ 𝐵 do
6: Extract interaction embedding 𝑥
7: Compute disentangled features: 𝑧𝛼 , 𝑧𝜀 ← 𝑓𝛼 (𝑥), 𝑓𝜀 (𝑥)
8: Compute prototype weights:𝑤𝛼 ,𝑤𝜀 via Eq. (3)
9: Compute prototype-based features: 𝑧𝛼 , 𝑧𝜀 via Eq. (2)
10: Predict reconstructed embedding: 𝑥 ← 𝑔(𝑧𝛼 ⊕ 𝑧𝜀 )
11: Compute reconstruction loss LAEDP via Eq. (7)
12: Compute action prediction 𝑎 via Eq. (10)
13: Compute imitation loss: LP via Eq. (11)
14: Update all parameters via gradient descent
15: Momentum update prototypes P𝛼 , P𝜀 , and {𝑀 (ℓ )𝑘,𝑙 } via

Eq. (12)
16: end for
17: end for

prototype mask𝑀 (ℓ )
𝑘,𝑙

is updated via an exponential moving average
that reflects its contribution to the current prediction. Specifically,
the gradient of the policy loss with respect to each mask is scaled
by the corresponding mixture weight:

𝑀
(ℓ )
𝑘,𝑙
← 𝜆𝑀

(ℓ )
𝑘,𝑙
+ (1 − 𝜆) ·𝑤 (𝑘 )𝛼 𝑤

(𝑙 )
𝜀 · ∇𝑀 (ℓ )

𝑘,𝑙

LP, (12)

where 𝜆 ∈ [0, 1) is the momentum coefficient. This mechanism
allows each sub-policy to accumulate experience gradually, with
more relevant prototypes receiving stronger updates. In doing so,
the model maintains a shared policy backbone while developing
modular, reusable behavioral primitives aligned with latent agent
and environment semantics.

This soft routing and masked update mechanism enables the
model to express complex, context-dependent behaviors as mix-
tures of reusable prototype-aligned sub-policies. More importantly,
it equips the system with the ability to generalize to unseen combi-
nations of agents and environments, so long as their constituent
prototypes have been encountered during training. In this way, the
DPR module bridges prototypes of agent, environment, and policy.
The full procedure is outlined in Algorithm 1.

5 Experiments
This section presents experiments to evaluate the effectiveness of
the proposed MoDP method. Our goal is to assess MoDP’s ability
to learn robust and generalizable policies under diverse embod-
iment scenarios. In particular, we focus on three key questions:
(1) Can MoDP achieve competitive performance in standard cross-
embodiment settings compared to existing generalist policy base-
lines (Sec. 5.1)? (2) Does MoDP exhibit improved compositional
generalization when encountering unseen agent-environment com-
binations (Sec. 5.2)? (3) What makes MoDP effective (Sec. 5.3)?

Table 1: Per-task success rate on 20 MetaWorld tasks.

Task HPT MoDP

finetune scratch finetune scratch

assembly-v2 0.03 0.40 0.27 0.72
basketball-v2 0.00 0.63 0.40 0.70
bin-picking-v2 0.27 0.87 0.10 0.83
box-close-v2 0.10 0.40 0.23 0.53
button-press-topdown-v2 1.00 1.00 1.00 1.00
button-press-topdown-wall-v2 1.00 1.00 1.00 1.00
button-press-v2 0.50 0.80 0.83 1.00
button-press-wall-v2 1.00 1.00 0.97 1.00
coffee-button-v2 0.97 1.00 0.97 1.00
coffee-pull-v2 0.30 0.47 0.40 0.62
coffee-push-v2 0.50 0.63 0.60 0.87
dial-turn-v2 0.87 1.00 0.57 0.97
disassemble-v2 0.03 0.30 0.03 0.30
door-close-v2 0.23 1.00 1.00 1.00
door-lock-v2 0.83 0.97 0.73 0.90
door-open-v2 1.00 1.00 1.00 1.00
door-unlock-v2 0.80 1.00 1.00 1.00
drawer-close-v2 0.23 1.00 1.00 1.00
drawer-open-v2 0.97 1.00 1.00 1.00
faucet-open-v2 0.43 1.00 1.00 1.00
hand-insert-v2 0.07 0.13 0.10 0.23

Average 0.53 0.79 0.68 0.84
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Figure 3: Training and validation loss curves of MoDP (red)
and HPT (green) over 20k steps. Insets show zoomed-in views
of the later training stage.

5.1 Standard Cross-Embodiment Setting
We follow the evaluation protocol of HPT [39] to assess the stan-
dard performance of our MoDP in CEL. Experiments are conducted
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Figure 4: Comparison of gradient statistics between MoDP and HPT.
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Figure 5: Compositional setting with 5 agents and 5 environments. The colored boxes indicate four types of compositions.

on 20 diverse tasks from the MetaWorld benchmark [53], covering
a wide range of manipulation skills and embodiment variations. All
models are trained for 20,000 steps using the AdamW optimizer
with a learning rate of 1 × 10−5, cosine annealing schedule, and
weight decay of 1× 10−4. The batch size is set to 1024, and training
is performed for up to 500 epochs with early stopping based on
validation performance. In our MoDP, both the agent and environ-
ment prototype spaces contain 6 prototypes of dimension 64. The
heads in the autoencoder are implemented as two-layer MLPs with
ReLU activation, while the decoder consists of a single linear layer.

we compare two training manners in Table 1: one fine-tuned
from the pre-trained HPT-base model with the trunk frozen, and
the other trained from scratch. MoDP consistently demonstrates
performance gains across a wide range of manipulation tasks in
both manners, validating its effectiveness in standard CEL setting.

To investigate the generalization behavior during training, we
visualize the training and validation loss curves in Fig. 3. MoDP
converges faster than HPT, reaching low validation loss in fewer
steps. While MoDP exhibits slightly higher training loss than HPT
in the later stages, it consistently achieves lower validation loss.
This suggests that MoDP generalizes better and avoids overfitting,
likely due to its disentangled and mixed prototype strategy, which
promotes more robust policy representations.

To further understand the differences in optimization dynamics,
we compare the maximum gradients of the stem, head, and entire
network in Fig. 4. Compared to HPT, MoDP exhibits a faster decline
in gradient magnitudes and maintains consistently lower values
in the later stages of training. This supports our hypothesis that
not all parameters contribute positively to transfer. By selectively
composing policy sub-networks through shared prototype spaces,
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Table 2: Success rate under the compositional setting. Each
group contains 5 held-out combinations.

In-domain (𝛼2, 𝜀1) (𝛼3, 𝜀3) (𝛼2, 𝜀2) (𝛼3, 𝜀1) (𝛼1, 𝜀1) Avg.

HPT 0.40 0.70 0.53 0.51 0.80 0.59
MoDP 0.87 0.80 0.40 0.63 0.93 0.73

Cross-Agent-Domain (𝛼5, 𝜀3) (𝛼4, 𝜀1) (𝛼4, 𝜀3) (𝛼5, 𝜀1) (𝛼4, 𝜀2) Avg.

HPT 0.63 0.50 0.02 0.13 0.52 0.36
MoDP 1.00 0.63 0.17 0.30 0.67 0.55

Cross-Env-Domain (𝛼3, 𝜀3) (𝛼2, 𝜀3) (𝛼3, 𝜀4) (𝛼2, 𝜀4) (𝛼1, 𝜀5) Avg.

HPT 0.27 0.80 0.18 0.65 0.03 0.39
MoDP 0.53 0.78 0.30 0.67 0.40 0.54

Cross-Domain (𝛼3, 𝜀3) (𝛼3, 𝜀5) (𝛼4, 𝜀5) (𝛼4, 𝜀3) (𝛼5, 𝜀4) Avg.

HPT 0.00 0.33 0.19 0.53 0.07 0.22
MoDP 0.20 0.51 0.30 0.67 0.23 0.38

MoDP avoids unnecessary parameter updates and achieves more
stable optimization and better generalization.

5.2 Compositional Generalization Setting
To evaluate the compositional generalization capability of MoDP,
we construct a challenging setting (Fig. 5) with 5 heterogeneous
agents and 5 distinct environments based on the ManiSkill3 simula-
tion environment [38]. The first three agents are modified variants
of the Fetch robot with different joint ranges, while the last two are
entirely different embodiments, XArm6-Robotiq and Panda. Simi-
larly, the first three environments are variations of the OpenCabinet-
Drawer-v1 task with differing drawer styles and orientations, and
the remaining two are PushCube-v1 and PlaceSphere-v1 tasks.

Owing to the varying degrees of differences between these
agents/ environments, we consider four evaluation settings by com-
posing them into four groups: (1) In-Domain compositions (gray
dashed box); (2) Cross-Agent-Domain compositions (blue dashed
box); (3) Cross-Environment-Domain compositions (green dashed
box); and (4) Cross-Domain compositions (red dashed box). This
setup allows us to systematically test the model’s ability to general-
ize across increasingly challenging compositional shifts.

Table 2 presents the success rates under four levels of composi-
tional generalization. Across all settings, our MoDP method consis-
tently outperforms the HPT baseline. In the In-Domain group, both
methods perform relatively well, with MoDP achieving a higher
average of 0.73. As the compositional gap increases, performance
drops are observed, especially in the Cross-Domain group, where
HPT achieves only 0.22 on average. However, MoDP maintains
robust performance across generalization settings, reaching 0.55 in
Cross-Agent-Domain, 0.54 in Cross-Env-Domain, and 0.38 in the
most challenging Cross-Domain case. These results highlight the
effectiveness of MoDP’s prototype-guided routing mechanism in
handling unseen agent-environment compositions.

5.3 Ablation Studies
Ablation on components. Table 3 shows that removing any core
component of MoDP leads to a performance drop, confirming their
complementary roles. The absence of the compositional lossL𝐴𝐸𝑃𝐷
causes the largest drop (from 0.68 to 0.58), highlighting its impor-
tance for learning disentangled representations. Removing policy

Table 3: Ablation study on MoDP components.

Agent-Env Prototypes Policy Prototypes L𝐴𝐸𝑃𝐷 Avg. Success Rate

✓ ✓ 0.58
✓ ✓ 0.61

✓ ✓ 0.65
✓ ✓ ✓ 0.68
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Figure 6: Ablation results on key hyperparameters.

or agent-environment prototypes also degrades performance, show-
ing that both disentangled feature modeling and policy routing are
essential for compositional generalization.
The number of prototypes. Fig. 6 (a) demonstrates that the num-
ber of prototypes is a critical factor influencing performance. We
adopt 6 prototypes as the default setting for the MetaWorld 20-task
benchmark, as it yields the best results. Both too few and too many
prototypes lead to performance drops, confirming that maintaining
a compact and expressive prototype space is essential for effective
compositional generalization.
The selection of threshold 𝛾 . Fig. 6 (b) illustrates the effect of
varying the pruning threshold 𝛾 on average success rate. Perfor-
mance improves as the threshold increases moderately, indicating
that pruning helps identify relevant sub-network parameters. How-
ever, when the threshold becomes too large, performance drops
significantly due to the removal of critical parameters. These re-
sults highlight the importance of selecting an appropriate pruning
threshold to ensure the effectiveness of the policy prototypes. We
adopt 𝛾 = 0.05 as the default setting.

6 Conclusion
This paper introduces MoDP, a Mixture of Disentangled Prototypes
method for improving compositional generalization in CEL. By con-
structing compact prototype spaces for agents, environments, and
policies, MoDP bridges the gap between the unbounded space of
agent-environment combinations and a single unified policy model.
Agent and environment representations are disentangled via a dual-
headed autoencoder with compositional reconstruction loss, guided
by constraints on representativeness, uniqueness, and simplicity.
Policy prototypes are achieved through connection-sensitive prun-
ing, extracting sub-networks from a shared policy backbone. All
prototypes are updated via a momentum-based strategy for stable
learning. Experimental results demonstrate that MoDP outperforms
baselines across standard and compositional settings, marking a
promising step toward scalable and generalizable embodied agents.
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